Querschnittswerte

berechnen mit

Querschnittswerte_polygonal_allgemein_yz.xlsm

Inhaltsverzeichnis

Übersicht	2
Koordinatensystem und Vorzeichen	2
Polygone	2
Formen	3
Profile	3
Beispiele	4
Brückenquerschnitt mit Kreislöchern	4
Eingabe	4
Verbundquerschnitt	6
Eingabe	6
Ungleichschenkliger Winkel	8
Eingabe	8
Venüband (Ribbon)	.10
iteratur	.11

© Detlef Rothe 2021

https://statikverstehen.de

Übersicht

Mit dem Excel-Programm Querschnittswerte_polygonal-allgemein_yz.xlsm können Querschnittswerte und Normalspannungen von Querschnitten bestimmt werden, die sich aus polygonal begrenzten Flächen [1], Formen und Profilen zusammensetzen. Dabei können unterschiedliche Elastizitätsmodule verwendet werden. Deshalb ist ein Bezugs-Elastizitätsmodul einzugeben. Dieser muss auch bei den Querschnittsdaten in einem Stabwerksprogramm verwendet werden.

Es werden folgende Annahmen getroffen:

- Linear elastisches Material
- Ebenbleiben der Querschnitte (Bernoulli)
- Die Querschnittsform ändert sich unter Belastung nicht (kleine Verformungen und Dehnungen)
- Die Querdehnung wird vernachlässigt

Der Querschnitt kann aus mehreren polygonal begrenzten Flächen zusammengesetzt sein, die unterschiedliche Elastizitätsmodule haben. Auch Löcher sind zulässig.

Zur Vereinfachung der Eingabe gibt es einige Formen (Kreis, Bewehrung, Viertelkreis und Viertelkreis als Ausrundung). Die Bewehrung unterscheidet sich vom Kreis dadurch, dass das Eigenträgheitsmoment vernachlässigt wird.

Für die Untersuchung von Verbund- und zusammengesetzten Stahlquerschnitten gibt es mehrere Stahlbauprofile, die in dem Tabellenblatt "Profiltabelle" abgelegt sind. Zurzeit stehen folgende Profile zur Verfügung:

IPE, IPEa, IPEo, IPEv, IPN, HEA, HEB, HEM, HEAA, UPN, UPE.

Bei Formen hat der Anwender die Möglichkeit, eine hinter der Form liegende Fläche automatisch abzuziehen, um ideelle Querschnittswerte korrekt zu berechnen.

Wahlweise kann auch der Kernquerschnitt bestimmt werden. Dazu wird automatisch ein "gespanntes Gummiband" um den Querschnitt berechnet, das auch dargestellt werden kann.

Koordinatensystem und Vorzeichen

Die Querschnittspunkte werden durch ein beliebig platzierbares Hilfskoordinatensystem eingegeben.

In Excel werden die Richtungen des Hilfskoordinatensystems mit y und z bezeichnet.

Polygone

Der Querschnitt kann durch einen oder mehrere Polygone beschrieben werden [1]. Wenn die Punkte im Gegenuhrzeigersinn eingegeben werden, ergibt sich eine positive Fläche. Löcher sind im Uhrzeigersinn einzugeben. Alternativ kann auch ein negativer Elastizitätsmodul eingegeben werden

(bei Eingabe im Gegenuhrzeigersinn). Das Polygon wird durch den ersten und letzten Punkt automatisch geschlossen.

Formen

Zurzeit stehen 4 Formen zur Verfügung. Die Formen werden mithilfe des Bezugspunktes E im Querschnitt platziert und können um diesen im Gegenuhrzeigersinn gedreht werden.

Profile

Zurzeit stehen folgende Profile zur Verfügung: IPE, IPEa, IPEo, IPEv, IPN, HEA, HEB, HEM, HEAA, UPN, UPE.

Der Bezugspunkt E zum Platzieren des Profils im Gesamtquerschnitt ist durch den roten Punkt gekennzeichnet und liegt immer auf der Symmetrieachse. Das Profil kann um den Bezugspunkt E gedreht werden.

Beispiele

Brückenquerschnitt mit Kreislöchern

Eingabe

	Anzahl da Anzahl Anzahl Anzahl d	allgeme er Polygone = der Formen = I der Profile = der Lastfälle =	1 7 0 1	nnittswert Einh	e berechnen Bezugs-EModul = Einheit der Längen = eit der Spannungen =	30.000, m kN/cm²]Wmm²]		h_da Hochschui University fbb Fachberei Bauingeni	LE DARMSTADT * OF APPLIED SCI CH EURWESEN
Lastfall	N [kN]	My [kNm]	Mz [kNm]		A=	72560,843	Cm ²	A =	7,2560843	m²
1		2000			A =	72560,843	Cm ²	A _i =	7,2560843	m²
					y _s =	500,0000	cm	y _s =	5	m
					z _s =	59,9223	cm	z _s =	0,599222505	m
					l _y =	94.772.195,5	cm ⁴	l _v =	0,947721955	m ⁴
					I _z =	6.256.837.862,9	cm ⁴	l _z =	62,56837863	m ⁴
					l _{yz} =	,0	cm ⁴	l _{yz} =	1,32683E-15	m ⁴
					φ ₀ =	-90,0000	٥		-90,0000	0

Tabellenblatt "Eingabe" mit berechneten Querschnittswerte

Eingabe der Polygone Polygon 1								
Anzahl	Eckpunkte =	10						
	E-Modul =	30.000,	N/mm ²					
i	У	z	sigma					
1	0	0	-0,12645534					
2	1,5	0	-0,12645534					
3	1,5	0,15	-0,09480048					
4	8,5	0,15	-0,09480048					
5	8,5	0	-0,12645534					
6	10	0	-0,12645534					
7	10	0,5	-0,02093916					
8	8	1,25	0,13733511					
9	2	1,25	0,13733511					
10	0	0,5	-0,02093916					

Tabellenblatt "Polygone"

Ein	gabe der Fori	men					
i	Тур	Art	E-Modul	У _Е	z _e	D, r	alpha [°]
1	1	0	0	2,3	0,7	0,7	0
2	1	0	0	3,2	0,7	0,7	0
3	1	0	0	4,1	0,7	0,7	0
4	1	0	0	5,	0,7	0,7	0
5	1	0	0	5,9	0,7	0,7	0
6	1	0	0,	6,8	0,7	0,7	0
7	1	0	0	77	07	0.7	0

Tabellenblatt "Formen"

Kernfläche mit zugehörigem Gummiband (rubberband) zur Berechnung der Kernfläche

Verbundquerschnitt

Es handelt sich um ein Rechteck aus Beton mit Bewehrung und ein Stahlbauprofil HE-B 1000

Eingabe

	Anzahl de Anzahl	allgeme er Polygone = der Formen =	eine Quersch	nnittswert	e berechnen Bezugs-EModul = [30.000,	N/mm²		h_da Hochschu UNIVERSIT fbb FACHBEREI BAUINGEN	LE DARMSTADT Y OF APPLIED SCI CH EURWESEN
	Anzahlo	ler Lastfälle =	2	Einh	eit der Spannungen =	kN/cm ²				
							_			
Lastfall	N [kN]	My [kNm]	Mz [kNm]		A =	2410,053096	Cm ²	A =	0,24100531	m²
1		200			A, =	4856,967547	Cm ²	A _i =	0,485696755	m²
2			300		y _s =	50,0000	cm	y _s =	0,5	m
					z _s =	44,5308	cm	z _s =	0,445308386	m
					I _y =	8.869.654,8	cm ⁴	l _y =	0,088696548	m ⁴
					I _z =	1.817.664,7	cm ⁴	l _z =	0,018176647	m ⁴
					l _{yz} =	,0	cm ⁴	l _{yz} =	-2,38298E-20	m ⁴
					φ ₀ =	0,0000	•		0,0000	۰

Tabellenblatt "Eingabe" mit berechneten Querschnittswerte

Tabellenblatt "Polygone"

Ein	igabe der For	men					
i	Тур	Art	E-Modul	У _Е	ZE	D, r	alpha [°]
1	1		200000	15,	5	1,6	
2	1		200000	30,	5	1,6	
3	1		200000	50,	5	1,6	
4	1		200000	70,	5	1,6	
5	1		200000	85.	5	1,6	

Tabellenblatt "Formen"

1,87 3,27

0,83

6 1,73 1,73

> 1,73 1,73

•0

1,33

Tabellenblatt "Profile"

Kernfläche mit Gummiband

Ungleichschenkliger Winkel

Ein ungleichschenkliger Winkel 200x150x15 mm aus Stahl wird durch ein Polygon und Viertelkreise modelliert. Das Hilfskoordinatensystem für die Eingabe befindet sich im Punkt 1 des Polygons (links unten).

Tabellenblatt "Eingabe" mit berechneten Querschnittswerte

Eingabe der Polygone								
Anzahl	Eckpunkte =	10						
	E-Modul =	210.000,	N/mm ²					
i	У	z	sigma					
1	0	0	-5,39074376					
2	-15	0	22,2246329					
3	-15	-0,75	22,0455962					
4	-14,25	-0,75	20,6648274					
5	-14,25	-1,5	20,4857907					
6	-1,5	-1,5	-2,98727949					
7	-1,5	-19,25	-7,22448138					
8	-0,75	-19,25	-8,60525021					
9	-0,75	-20	-8,78428691					
10	0	-20	-10,1650557					

Tabellenblatt "Polygone"

Ein	Eingabe der Formen									
i	Тур	Art	E-Modul	УE	z _e	D, r	alpha [°]			
1	3		210.000,	-14,3	-0,75	0,75	180			
2	3		210.000,	-0,8	-19,25	0,75	180			
3	4		210.000,	-1,5	-1,5	1,5	180			

Tabellenblatt "Formen"

Menüband (Ribbon)

Für die Programmsteuerung gibt es im Menüband den Reiter "Statik". Eine Neuberechnung wird durch Klicken des Buttons *Rechnen* gestartet. In der Gruppe *Projekt Aktivitäten* befinden sich 3 Buttons. Der Button *Eingabe löschen* entfernt in allen Eingabezellen vorhandene Eingaben.

Die Eingabedaten eines vorhandenen Projekts können mit *Eingabe speichern* in eine separate Excel Datei (*.xlsx) gesichert werden. Diese Datei enthält nur die Eingabedaten und keinen ausführbaren Code. Mit dem Button *Eingabe einlesen* kann eine zuvor gesicherte Eingabe wieder eingelesen werden. Danach ist eine Neuberechnung erforderlich. Die in Zellen vorhandenen Daten werden überschrieben.

Der Vorteil gegenüber der Verwendung von Querschnittswerte_polygonal-allgemein-yz.xlsm besteht darin, dass bei einer neuen Programmversion die Daten nicht händisch kopiert werden müssen.

In der Gruppe *Darstellungen* kann der aktive Lastfall ausgewählt werden. Eine Änderung der Auswahl erfordert keine Neuberechnung.

Die Änderung des Überhöhungsfaktors für die Spannungen und des Schriftgrades erfordern eine Neuberechnung.

Die Änderung der Kontrollkästchen für die Darstellung des Kernquerschnittes und des Gummibandes (Rubberband) erfordert eine Neuberechnung.

Literatur

[1] Fleßner, H.: Ein Beitrag zur Ermittlung von Querschnittswerten mit Hilfe elektronischer Rechenanlagen, Bauingenieur 37 (1962), S. 146-149